Microstructural characteristics and biocompatibility of a Type-B carbonated hydroxyapatite coating deposited on NiTi shape memory alloy.

نویسندگان

  • Chenglin Chu
  • T Hu
  • L H Yin
  • Y P Pu
  • Y S Dong
  • P H Lin
  • C Y Chung
  • K W K Yeung
  • P K Chu
چکیده

Microstructural characteristics and biocompatibility of a Type-B carbonated hydroxyapatite (HA) coating prepared on NiTi SMA by biomimetic deposition were characterized using XRD, SEM, XPS, FTIR and in vitro studies including hemolysis test, MTT cytotoxicity test and fibroblasts cytocompatibility test. It is found CO(3)(2-) groups were present as substitution of PO(4)(3-) anions in HA crystal lattice due to Type-B carbonate. The growth of Type-B carbonated HA coating in SBF containing HCO(3)(-) ions is stable during all periods of biomimetic deposition. The carbonated HA coating has better blood compatibility than the chemically-polished NiTi SMA. There was a good cell adhesion to this HA coating surface and cell proliferation in the vicinity of the coating was better than that for the chemically-polished NiTi SMA. Thus biomimetic deposition of this carbonated HA coating is a promising way to improve the biocompatibility of NiTi SMA for implant applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Activation of NiTi Alloy by Using Electrochemical Process for Biomimetic Deposition of Hydroxyapatite Coating (TECHNICAL NOTE)

Electrochemical depositions of calcium phosphate (Ca-P) film on NiTi alloy in concentrated simulated body flood (SBF×5) were carried out by cathodic polarization. The Ca-P layer was successfully deposited on Ni-Ti alloy substrate under 10mA/cm2 current density for 2 hours at room temperature. Then, in order to investigate the bioactivity of the pre-calcified samples, they were immersed in SBF f...

متن کامل

EFFECT OF ANODIC OXIDATION ON THE CORROSION BEHAVIOR OF NICKEL-TITANIUM SHAPE MEMORY ALLOYS IN SIMULATED BODY FLUIDS (SBF)

The effect of anodic oxidation of a NiTi shape memory alloy in sulfuric acid electrolyte on its surface characteristics was studied. Surface roughness was measured by roughness tester. Surface morphology was studied using optical microscopy (OM) and scanning electron microscopy (SEM). Corrosion behavior was specified by recording Potentiodynamic polarization cur...

متن کامل

Titanium Oxide (TiO2) Coatings on NiTi Shape Memory Substrate Using Electrophoretic Deposition Process

The aim of the present research is to convert bioinert surface of NiTi to bioactive and biocompatible surface. In order to develop a bioactive and corrosion resistant film on NiTi, electrophoretic deposition process was done and TiO2 particles were deposited on the NiTi surface. Suspensions including TiO2 particles were prepared using a mixture of acetone and n-butanol (0%, 30%, 60%, 80% and 10...

متن کامل

Biocompatibility and Inflammatory Potential of Titanium Alloys Cultivated with Human Osteoblasts, Fibroblasts and Macrophages

The biomaterials used to maintain or replace functions in the human body consist mainly of metals, ceramics or polymers. In orthopedic surgery, metallic materials, especially titanium and its alloys, are the most common, due to their excellent mechanical properties, corrosion resistance, and biocompatibility. Aside from the established Ti6Al4V alloy, shape memory materials such as nickel-titani...

متن کامل

TRANSFORMATION BEHAVIOR OF NiTi SHAPE MEMORY ALLOYS TREATED BY THERMOMECHANICAL PROCESSING USING DSC

Abstract: In the present study the effect of thermomechanical treatment (cold work and annealing) on the transformation behavior of NiTi shape memory alloys was studied. Differential scanning calorimetry was used to determine transformation temperature and its relation to precipitates and defects. Three alloys including Ti-50.3at.% Ni, Ti-50.5at.% Ni (reclamated orthodontic wires) and 50.6at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bio-medical materials and engineering

دوره 19 6  شماره 

صفحات  -

تاریخ انتشار 2009